Travma Sonrası Stres Bozukluğu Yönetimi:Makine Öğrenmesi Yaklaşımı


Dağtekin M. , Seven E., Balsever A. E. , Var E. N. , Türker Şener L., Alçalar A. N. , ...Daha Fazla

Avrupa Bilim ve Teknoloji Dergisi, ss.284-288, 2020 (Diğer Kurumların Hakemli Dergileri)

  • Basım Tarihi: 2020
  • Doi Numarası: 10.31590/ejosat.779973
  • Dergi Adı: Avrupa Bilim ve Teknoloji Dergisi
  • Sayfa Sayıları: ss.284-288

Özet

Travma sonrası stres bozukluğu (TSSB), doğal afet, salgın, ciddi bir kaza, terör eylemi, kavga/savaş, tecavüz veya benzeri, yaşamı tehdit eden bir deneyim veya olay yaşayan veya buna tanık olan kişide meydana gelen travmatik bir yaralanma olarak tanımlanır. Makine öğrenmesi (MÖ), TSSB tabanlı klinik ruhsal hastalıkları tespit etme, dijitalleştirme, riskleri önleme, izleme, sınıflandırarak ve kişilere özgü sonuçlar çıkararak psikolojik ve fiziksel sağlık üzerinde son on yıldır çalışmalarını arttırarak devam ettirmektedir. Bu çalışmada, Mississippi-Civilian Versiyon Veri Seti ve DSM-5 (PCL-5) Veri Setini MÖ’nde kullanarak, katılımcıların TSSB skorlarını öngördük. Deneylerimiz için k-en yakın komşu (k-nn), Destek Vektör Makinesi (DVM), karar ağacı (KA), Gauss Naive Bayes (GNB) ve Yapay Sinir Ağları (YSA) yöntemleri kullandık. Tahmin sonuçlarının karşılaştırılmasına göre Mississippi Ölçeği Veri Seti için TSSB tahmini sınıflandırma performans sonuçları göz önüne alındığında, YSA’nın doğruluk, F1 skoru ve anımsatma açısından en iyi tahmin sonuçlarını verdiğini gözlemledik. Hassasiyet alanında ise Gauss Naive Bayes (GNB) en iyi tahmin sonucunu verdi. Öte yandan, tüm bu yöntemleri DSM-5 (PCL-5) ölçekli veri setine uyguladığımızda YSA'nın doğruluk, F1 skoru ve hassasiyet açısından en iyi sonuçları verdiğini gözlemledik. Anımsatma açısından ise, Gaussian Naive Bayes (GNB) en iyi tahmin skorunu verdi. Tüm yöntemleri bu iki farklı veri setinde deneyip sonuçları karşılaştırarak, TSSB olan hastaların tahmin, tanı ve izlenmesinde hangi yöntemin daha verimli olabileceğini gösterdik.

Post-traumatic stress disorder (PTSD) is defined as a traumatic injury developed after facing or witnessing a life-threatening experience or event such as a natural disaster, a pandemic, a serious accident, a terrorist act, war/combat, rape or other violent personal assault. Machine Learning (ML) has been widening its scope on psychological and physical healthcare for a decade by predicting detecting, personalizing, digitalizing, preventing risks, monitoring, and classifying PTSD based clinical mental diseases. In this study, we predict PTSD scores of the participants obtained from Mississippi-Civilian Version Scale and DSM-5 (PCL-5) Scale by applying ML. For our experiments we used the following methods namely k-nearest neighbor (k-nn), support vector machine (SVM), decision tree (DT), Gaussian Naive Bayes (GNB) and artificial neural networks (ANN). According to the comparison of the prediction results Considering PTSD prediction classification performance results for Mississippi (Civilian version) scale data set in comparison to the above mentioned methods, ANN offers the best prediction in terms of accuracy, F1 score and recall. However, Gaussian Naive Bayes (GNB) gives the best prediction score in terms of precision. On the other hand, when we applied all these methods to DSM-5 (PCL-5) scale data set, we have observed that ANN offers the best prediction in terms of accuracies, F1 score and precision. Nevertheless, in terms of recall Gaussian Naive Bayes (GNB) gives the best prediction score. By applying all the methods to these two different data sets and comparing the results, we demonstrate which method can be more efficient in prediction, diagnosis and monitoring the patients with PTSD