Analysis of the degradation of a model dental composite


Creative Commons License

Koin P. J. , Kilislioglu A. , Zhou M., Drummond J. L. , Hanley L.

JOURNAL OF DENTAL RESEARCH, cilt.87, sa.7, ss.661-665, 2008 (SCI İndekslerine Giren Dergi) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 87 Konu: 7
  • Basım Tarihi: 2008
  • Doi Numarası: 10.1177/154405910808700712
  • Dergi Adı: JOURNAL OF DENTAL RESEARCH
  • Sayfa Sayıları: ss.661-665

Özet

Dental composites undergo material property changes during exposure to the oral environment and may release compounds of potential toxicity, such as bisphenol A. Degradation of dental composites was studied in a simplified overlayer model in which bisphenol A diglycidyl methacrylate (BisGMA) was covalently bound to a porous silicon oxide surface. It was hypothesized that the chemical structure of this overlayer would allow release of bisphenol A, BisGMA, and the decomposition products thereof, upon exposure to water for an extended period. Liquid chromatography mass spectrometry found leaching of intact BisGMA and several degradation products that contained the bisphenol A moiety from the overlayer into distilled water after 2 wks of aging. The absence of bisphenol A release from the overlayer reduces concerns regarding its potential health risk in dental composites. Nevertheless, health concerns might arise with respect to BisGMA and the leached degradation products, since they all contain the bisphenol A moiety. Abbreviations: BisGMA, bisphenol A diglycidyl methacrylate; HPLC, high-performance liquid chromatography; LCMS, liquid chromatography mass spectrometry; MA, methacrylic acid; MPS, 3-(trimethoxysilyl) propyl methacrylate; m/z, mass-to-charge ratio; and TIC, total ion chromatogram.

Abstract: Dental composites undergo material property changes during exposure to the oral environment and may release compounds of potential toxicity, such as bisphenol A. Degradation of dental composites was studied in a simplified overlayer model in which bisphenol A diglycidyl methacrylate (BisGMA) was covalently bound to a porous silicon oxide surface. It was hypothesized that the chemical structure of this overlayer would allow release of bisphenol A, BisGMA, and the decomposition products thereof, upon exposure to water for an extended period. Liquid chromatography mass spectrometry found leaching of intact BisGMA and several degradation products that contained the bisphenol A moiety from the overlayer into distilled water after 2 wks of aging. The absence of bisphenol A release from the overlayer reduces concerns regarding its potential health risk in dental composites. Nevertheless, health concerns might arise with respect to BisGMA and the leached degradation products, since they all contain the bisphenol A moiety. Abbreviations: BisGMA, bisphenol A diglycidyl methacrylate; HPLC, high-performance liquid chromatography; LCMS, liquid chromatography mass spectrometry; MA, methacrylic acid; MPS, 3-(trimethoxysilyl) propyl methacrylate; m/z, mass-to-charge ratio; and TIC, total ion chromatogram.