Fuzzy logic control for active bus suspension system


Creative Commons License

Turkkan M. , Yagiz N.

1st International Conference on Mathematical Modelling in Physical Sciences (IC-MSQUARE), Budapest, Macaristan, 3 - 07 September 2012, cilt.410

Özet

In this study an active controller is presented for vibration suppression of a full-bus suspension model that use air spring. Since the air spring on the full-bus model may face different working conditions, auxiliary chambers have been designed. The vibrations, caused by the irregularities of the road surfaces, are tried to be suppressed via a multi input-single output fuzzy logic controller. The effect of changes in the number of auxiliary chambers on the vehicle vibrations is also investigated. The numerical results demonstrate that the presented fuzzy logic controller improves both ride comfort and road holding.

In this study an active controller is presented for vibration suppression of a full-bus suspension model that use air spring. Since the air spring on the full-bus model may face different working conditions, auxiliary chambers have been designed. The vibrations, caused by the irregularities of the road surfaces, are tried to be suppressed via a multi input-single output fuzzy logic controller. The effect of changes in the number of auxiliary chambers on the vehicle vibrations is also investigated. The numerical results demonstrate that the presented fuzzy logic controller improves both ride comfort and road holding.