Durability of concrete incorporating non-ground blast furnace slag and bottom ash as fine aggregate


YUKSEL I., Bilir T. , OZKAN O.

BUILDING AND ENVIRONMENT, cilt.42, ss.2651-2659, 2007 (SCI İndekslerine Giren Dergi)

  • Cilt numarası: 42 Konu: 7
  • Basım Tarihi: 2007
  • Doi Numarası: 10.1016/j.buildenv.2006.07.003
  • Dergi Adı: BUILDING AND ENVIRONMENT
  • Sayfa Sayısı: ss.2651-2659

Özet

The paper presents investigation of how the usage of bottom ash (BA), granulated blast furnace slag (GBFS), and combination of both of these materials as fine aggregate in concrete affects the concrete durability. To assess durability characteristics of concrete, durability tests were conducted and the results were evaluated comparing with reference concrete. Three series concrete were produced. GBFS, BA and GBFS + BA are replaced the 3-7 mm-sized aggregate. Five test groups were constituted with the replacement percentages as 10%, 20%, 30%, 40% and 50% in each series. These by-products were used as non-ground form in the concrete. Durability properties of the concretes were compared in order to study the possible advantages of different replacement ratios. According to results, GBFS and BA affects some durability properties of concrete positively in case of it is used as fine aggregate. Resistance to high temperature and surface abrasion are positively affected properties. Capillarity, drying-wetting and freezing-thawing resistance of the concrete can be accepted to some extent. Properties of by-products and its replacement ratio are controlling the influence level and direction. Comparison of the SEM images and test results show that chemical and physical properties of GBFS and BA are the main factors affecting the concrete durability. It is concluded that it is possible to produce durable concrete by using GBFS and BA as fine aggregate. (c) 2006 Elsevier Ltd. All rights reserved.

The paper presents investigation of how the usage of bottom ash (BA), granulated blast furnace slag (GBFS), and combination of both of these materials as fine aggregate in concrete affects the concrete durability. To assess durability characteristics of concrete, durability tests were conducted and the results were evaluated comparing with reference concrete. Three series concrete were produced. GBFS, BA and GBFS+BA are replaced the 3-7 mm-sized aggregate. Five test groups were constituted with the replacement percentages as 10%, 20%, 30%, 40% and 50% in each series. These by-products were used as non-ground form in the concrete. Durability properties of the concretes were compared in order to study the possible advantages of different replacement ratios. According to results, GBFS and BA affects some durability properties of concrete positively in case of it is used as fine aggregate. Resistance to high temperature and surface abrasion are positively affected properties. Capillarity, drying-wetting and freezing-thawing resistance of the concrete can be accepted to some extent. Properties of by-products and its replacement ratio are controlling the influence level and direction. Comparison of the SEM images and test results show that chemical and physical properties of GBFS and BA are the main factors affecting the concrete durability. It is concluded that it is possible to produce durable concrete by using GBFS and BA as fine aggregate.