G-protein Coupled Estrogen Receptor Expression in Growth Hormone Secreting and Non-Functioning Adenomas


Ozkaya H. M. , Sayitoglu M., Comunoglu N., Sun E., Keskin F., Ozata D., ...Daha Fazla

Experimental and Clinical Endocrinology and Diabetes, 2020 (SCI Expanded İndekslerine Giren Dergi) identifier identifier identifier

  • Cilt numarası:
  • Basım Tarihi: 2020
  • Doi Numarası: 10.1055/a-1274-1330
  • Dergi Adı: Experimental and Clinical Endocrinology and Diabetes

Özet

© 2020 Georg Thieme Verlag. All rights reserved.Purpose To evaluate the expression of G-protein coupled estrogen receptor (GPER1), aromatase, estrogen receptor α (ERα), estrogen receptor β (ERβ), pituitary tumor transforming gene (PTTG), and fibroblast growth factor 2 (FGF2) in GH-secreting and non-functioning adenomas (NFA). Methods Thirty patients with acromegaly and 27 patients with NFA were included. Gene expression was determined via quantitative reverse transcription polymerase chain reaction (QRT-PCR). Protein expression was determined via immunohistochemistry. Results There was no difference, in terms of gene expression of aromatase, ERα, PTTG, and FGF2 between the two groups (p>0.05 for all). ERβ gene expression was higher and GPER1 gene expression was lower in GH-secreting adenomas than NFAs (p<0.05 for all). Aromatase and ERβ protein expression was higher in GH-secreting adenomas than NFAs (p=0.01). None of the tumors expressed ERα. GPER1 expression was detected in 62.2% of the GH-secreting adenomas and 45% of NFAs. There was no difference in terms of GPER1, PTTG, FGF2 H scores between the two groups (p>0.05 for all). GPER1 gene expression was positively correlated to ERα, ERβ, PTTG, and FGF2 gene expression (p<0.05 for all). There was a positive correlation between aromatase and GPER1 protein expression (r=0.31; p=0.04). Conclusions GPER1 is expressed at both gene and protein level in a substantial portion of GH-secreting adenomas and NFAs. The finding of a positive correlation between GPER1 and ERα, ERβ, PTTG, and FGF2 gene expression and aromatase and GPER1 protein expression suggests GPER1 along with aromatase and classical ERs might mediate the effects of estrogen through upregulation of PTTG and FGF2.