Full Length Research Paper

Theoretical analysis on the laminar flow of an elastico-viscous fluid between a moving elliptic plate with constant injection and the ground

Serdar Barış¹ and M. Salih Dokuz²*

¹Faculty of Engineering, Department of Mechanical Engineering, Istanbul University, Avciar 34320, Istanbul, Turkey.
²Faculty of Mechanical Engineering, Istanbul Technical University, Gümüşsuyu 34437, Istanbul, Turkey.

Accepted 17 May, 2013

A theoretical study is presented for the problem of injection of an elastico-viscous fluid through a moving elliptic plate. The governing equations are reduced to a system of nonlinear ordinary differential equations by means of appropriate transformations for the velocity components. The resulting boundary value problem is solved numerically using the Matlab solver singular boundary value problem (SBVP). The current numerical analysis encompasses the range of cross-flow Reynolds number R as $0 \leq R \leq 5$. The results are compared with those known from the literature and an excellent agreement is found. Perturbation solutions are also obtained for small R. A comparison of the numerical solutions with the perturbation solutions is made. The comparison shows that the perturbation solutions give acceptable results for $R < 1$ and $N < 0.2$, where N is the viscoelastic fluid parameter. The influence of the viscoelastic fluid parameter on the velocity, load-carrying capacity and friction force has been examined carefully.

Key words: Elasticoviscous fluid, porous slider, load-carrying capacity, friction force.

INTRODUCTION

The flow of Newtonian and non-Newtonian fluids through porous channels has relevance to several technologically significant problems. Examples of these are the cases of boundary layer control, transpiration cooling, and gaseous diffusion. In addition to applications mentioned above, blowing is used to add reactants, prevent corrosion and reduce the drag. Suction is applied to chemical processes to remove reactants (Schlichting, 1968; Skalak, 1978). The case of a two-dimensional, incompressible, steady laminar suction flow of a Newtonian fluid in a parallel-walled porous channel was first studied by Berman (1953). He solved the Navier-Stokes equations using a perturbation method for very low cross-flow Reynolds number. After his pioneering work, the flow of fluids over porous boundaries has been studied by many researchers (Sellers, 1955; Yuan, 1956; White et al., 1958; Proudman, 1960; Terrill and Shrestha, 1965; Brady, 1984; Cox, 1991; Singh, 1993; Choi et al., 1999; Bujurke et al., 2000; Ariel, 2002; Fang, 2004; Kurtcebe and Erim, 2005; Kamisli, 2006).

In this study, a numerical solution of the steady flow of an elastico-viscous fluid between a porous elliptic plate and the ground is given. The computer program utilized in the present research is the Matlab solver singular boundary value problem (SBVP). To the best of our knowledge, the results of this paper are new and they have not been published before. The calculation of such flows is interesting in the mechanical engineering
research for some developments concerning fluid-cushioned porous sliders. It is well-known fact that fluid-cushioned porous sliders are useful in reducing the frictional resistance of moving objects (Bruce, 2012; Keith et al., 2012). For Newtonian fluids, previous studies include the porous circular slider (Wang, 1974), the porous flat slider (Skalak and Wang, 1975), and the porous elliptic slider (Wang, 1978; Watson et al., 1978). Later, the fluid dynamics of a porous elliptic slider was studied by Bhatt (1981) for a second-order viscoelastic fluid. He obtained the first-order perturbation solution in terms of cross-flow Reynolds number. Ariel (1993) has extended Skalak and Wang’s (1975) analysis to a Walters’ B viscoelastic fluid which is characterized by two material constants. In his study, the perturbation and exact numerical solutions have been obtained. The numerical solutions in the present paper include those given by Ariel (1993) as a special case. Also, for the case of Newtonian fluid, there is an overlap between our results and those given in Wang (1974), Skalak and Wang (1975), Wang (1978) and Watson et al. (1978). These give us confidence regarding analytical and numerical calculations. Bhatt’s (1981) work was extended by Barış (2002) to the case of a Walters’ B fluid but the author disregarded a very important issue about substantiating the reliability of the perturbation solutions, and hence he failed to explicitly highlight the validity of the perturbation solutions for the problem under investigation. The exact numerical solutions presented in this paper pointed out that the perturbation technique does not guarantee producing of the correct results qualitatively or quantitatively. Recently, Elsharkawy and Alyaqout (2009) proposed an approach for designing the optimum shape of slider bearing using sequential quadratic programming. Khan et al. (2011a) obtained a series solution of the long porous slider problem using the homotopy perturbation method. In their subsequent research, they solved the long porous slider problem using the Adomian decomposition method (Khan et al., 2011b). Shukla and Deheri (2011) analyzed the performance of a porous rough secant shaped slider bearing under the presence of a magnetic fluid lubricant. Faraz (2011) studied the circular porous slider problem using variational iteration algorithm-II. More recently, Wang (2012) studied the effect of slip on the performance of the porous slider. Shah et al. (2012) theoretically discussed about the inclined slider bearing with porous layer attached to slider as well as stator including effects of slip velocity and squeeze velocity. Ghoreishi et al. (2012) obtained the approximate solution for the problem of circular porous slider using one step optimal homotopy analysis method.

MATERIALS AND METHODS

Formulation of the problem

We consider the steady, incompressible, laminar flow of an elastico-viscous fluid between a porous elliptic plate and the ground. Figure 1 shows the physical model and the coordinate system. A fluid is injected through an elliptic plate, boundary of which is described by \[x^2 + \beta y^2 = D^2 \] \((\beta < 1), z=d\), where \(\beta \) is the square of the ratio of minor axis to major axis. The supply pressure is assumed to be large enough to cause a nearly constant injection velocity \(U_3 \) through the elliptic plate. The porous elliptic plate is moving laterally with velocities \(U_1 \) and \(U_2 \) along the negative \(x \)- and \(y \)-directions, respectively. We have further assumed the gap width \(d \) between the elliptic plate and the ground is small compared with \(D \), that is, \(D >> d \). Due to this assumption the edge effects can be ignored.

The major axis of the elliptic plate under consideration is the segment of length \(2D/\sqrt{\beta} \) between the \(y \)-intercepts \((0, \pm D/\sqrt{\beta}) \). The minor axis is the segment of length \(2D \) between the \(x \)-intercepts \((\pm D, 0) \). Its eccentricity \(e = \sqrt{1 - \beta} \), which indicates the degree of departure from circularity, may vary from 0 to 1. Note that our current results reduce the circular case when \(e = 0 \), that is, \(\beta = 1 \), and the flat case when \(e = 1 \), that is, \(\beta = 0 \). As a result, the solutions presented in this research include the special cases corresponding to a porous circular plate and a porous flat plate.

There are many fluids whose behavior cannot be described by the classical Navier-Stokes equations. The inadequacy of the theory of Newtonian fluids in predicting the behavior of some fluids, especially those with high molecular weight, leads to the developments of non-Newtonian fluid mechanics. There are numerous models of viscoelastic fluids suggested in the literature. To get some insight into their flow behavior, it is preferable to restrict to a model with a minimum number of parameters in the constitutive equations. We have chosen the model of elasticoviscous fluid for our study as it involves only one non-Newtonian parameter. The Cauchy stress tensor \(T \) in such a fluid has the form (Beard and Walters, 1964).

\[
T = -pI + 2\eta_0 \varepsilon - 2k_0 \frac{\delta \varepsilon}{\delta t} \tag{1}
\]

in which \(p \) is the pressure, \(I \) is the identity tensor, and the rate of strain tensor \(\varepsilon \) is defined by

\[
2\varepsilon = \nabla \mathbf{v} + (\nabla \mathbf{v})^T, \quad (\nabla \mathbf{v})^{ij} = \partial v_j / \partial x_i \tag{2}
\]

where \(\mathbf{v} \) is the velocity vector, \(\nabla \) is the gradient operator, and \(\delta / \delta t \) denotes the convected differentiation of a tensor quantity in relation to the material in motion. For the rate of strain tensor, it is given by

\[
\frac{\delta \varepsilon}{\delta t} = \frac{\partial \varepsilon}{\partial t} + \mathbf{v} \cdot \nabla \varepsilon - \varepsilon \cdot \nabla \mathbf{v} - (\nabla \mathbf{v})^T \cdot \varepsilon \tag{3}
\]

Finally \(\eta_0 \) and \(k_0 \) are, respectively, the limiting viscosity at small rate of shear and the short memory coefficient. For a detailed description of this model the reader should consult Beard and Walters (1964). From the theoretical point of view, there has been a
remarkable interest in the study of Walters’ B elastico-viscous fluid in recent times. Calculations based on this fluid model for various flow problems have been carried out by many authors (Nandeppanavar et al., 2010; Singh et al., 2010; Joneidi et al., 2010; Gupta and Aggarwal, 2011; Ghasemi and Bayat, 2011; Tonekaboni et al., 2012; Prakash et al., 2012).

In addition to Equation (1), the basic equations of the problem are the following:

Continuity equation:
\[\nabla \cdot \mathbf{v} = 0 \]
(4)

Equations of motion:
\[\rho (\mathbf{v} \cdot \nabla \mathbf{v}) = \nabla \cdot \mathbf{T} \]
(5)

where \(\rho \) is the density. The assumptions made in the above equations are as follows: (a) The flow is steady and laminar, (b) The fluid is incompressible, (c) The body forces are negligible.

Substituting Cauchy stress tensor from Equation (1) into equations of motion (5), with the aid of Equations (2) and (3), we get
\[
\rho (\mathbf{v} \cdot \nabla \mathbf{v}) = -\nabla p + \eta_0 \nabla^2 \mathbf{v} - 2k_0 \mathbf{v} \cdot \nabla \mathbf{v} + k_0 \nabla^2 (\mathbf{v} \cdot \nabla \mathbf{v})
\]
(6)

In a reference frame translating with the porous elliptic plate, let \(u, v, \) and \(w \) be the velocity components corresponding to the \(x-, y- \) and \(z- \) directions, respectively. Following Wang (1978), we look for a solution, compatible with the continuity Equation (4), of the form
\[
u = \nu_1 f(\eta) + \frac{U_1 x}{d} f'(\eta), \quad v = \nu_2 g(\eta) + \frac{U_2 y}{d} k'(\eta), \quad w = -U_3 (k(\eta) + k(\eta))
\]
(7)

where \(\eta = z/d \) is the similarity variable and the prime denotes the differentiation with respect to \(\eta \).

The boundary conditions for the velocity field are
\[
u(0) = \nu_1, \quad v(0) = U_2, \quad w(0) = 0, \quad u(1) = 0, \quad v(1) = 0, \quad w(1) = -U_3
\]
(8)

By using equations of motion (6) and similarity transformation (7), it can be shown that the general expression for the pressure distribution is
\[
p(x, y, \eta) = C_1 y + C_2 x + C_2 y^2 + C_4 x^2 - \frac{1}{2} \rho w^2 + \eta_0 \frac{d w}{d \eta} + 2k_0 \left(\frac{d w}{d \eta} \right)^2 - k_0 w \frac{d^2 w}{d \eta^2} + p_0
\]
(9)
where the constants C_1, C_2, C_3 and C_4 are
\[C_1 = \frac{\eta_0 U_3^2}{d^2} (g^{ii} + R[(h + k)g' - k'g] + RN[(h + k)g^{iii}(h' + 2h'')g' + (k' - h'')g' - k'''g]), \]
\[C_2 = \frac{\eta_0 U_3}{d^2} (k^{ii} + R[(h + k)k^i - k^i] + RN[(h + k)k^{iv} - 2(h' + k')k^{iii} - k''k^i + k'''k]) , \]
\[C_3 = \frac{\eta_0 U_3}{d^2} (f^{ii} + R[(h + k)f' - h'f] + RN[(h + k)f^{iii}(h' + 2h'')f' + (k' - h'')f' - h'''f]), \]
\[C_4 = \frac{\eta_0 U_3}{d^3} (h^{ii} + R[(h + k)h' - h''] + RN[(h + k)h^{iv} - 2(h' + k')h^{iii} - k''h' + h'''h'']), \]
and p_0 is the constant of integration. In the above equations, the cross-flow Reynolds number R and dimensionless measure of viscoelasticity of the fluid N are defined through, respectively
\[R = \frac{\rho U_3 d}{\eta_0} \quad N = \frac{k_0}{\rho d^2}. \]
In view of the fact that the shape of porous plate makes the isobars similar to ellipses, the constants C_1, C_2, C_3 and C_4 must satisfy the following equations:
\[C_1 = 0, \quad C_2 = 0, \quad C_3 = \beta C_4. \]
Substituting Equation (15) into Equations (9) to (13), we obtain
\[p(x, y, \eta) = \frac{\rho U_3^2}{2d^2R} \left[x^2 + \beta y^2 \right] - \frac{1}{2} \rho w^2 + \eta_0 \frac{d w}{d \tau} + 2k_0 \left(\frac{d w}{d \tau} \right)^2 - k_0 \frac{d^2 w}{d \tau^2} + p_0, \]
\[h^{ii} + R[(h + k)h' - h''] + RN[(h + k)h^{iv} - 2(h' + k')h^{iii} - k''h' + h'''h''] = A, \]
\[k^{ii} + R[(h + k)k^i - k^i] + RN[(h + k)k^{iv} - 2(h' + k')k^{iii} - h''k' + k'''k] = \beta A, \]
\[f^{ii} + R[(h + k)f' - h'f] + RN[(h + k)f^{iv} - (h' + 2h'')f' + (k' - h'')f' - h'''f] = 0, \]
\[g^{ii} + R[(h + k)g' - k'g] + RN[(h + k)g^{iv} - (k' + 2h')g' + (k' - h'')g' - k'''g] = 0, \]
where A is an unknown constant. The boundary conditions on velocity given by Equation (8) require
\[h(0) = h'(0) = h''(0) = 0, \quad k(0) = k'(0) = k''(0) = 0, \quad h(1) + k(1) = 1, \quad f(0) = 1, \quad f'(0) = 0, \quad g(0) = 1, \quad g'(0) = 0. \]
The above boundary value problem includes the special cases corresponding to a porous flat plate and a porous circular plate. As far as practical applications are concerned, it is important to know the governing equations related to the above mentioned special cases. They can be easily obtained from Equations (17) to (21) by letting $\beta = 0$, $k \equiv 0$, and $\beta = 1$, $g \equiv 0$, $h \equiv k$, respectively, as follows:

Porous flat plate
\[h^{ii} + R[(h h' - h'')] + RN[(h h'^{iv} - 2h'h'' + h'^{iv})] = A \]
\[f^{ii} + R(h f' - h'f) + RN[(h f'^{iv} - h'f' + h'^{iv}f - h''f') = 0 \]
\[g^{ii} + R(h g' - h'f') + RN[(h g'^{iv} - 2h'g'' - h'^{iv}g') = 0 \]
with the boundary conditions
\[h(0) = h'(0) = h''(0) = 0, \quad h(1) = 1, \quad f(0) = 1, \quad f'(0) = 0, \quad g(0) = 1, \quad g'(0) = 0. \]

Porous circular plate
\[h^{ii} + R(2h h'' - h''') + RN[(2h h'^{iv} - 4h'h''') = A \]
\[f^{ii} + R(2h f' - h'f) + RN[(2h f'^{iv} - 3h'f' - h'''f') = 0 \]
with the boundary conditions
\[h(0) = h'(0) = h''(0) = 0, \quad h(1) = 1, \quad f(0) = 1, \quad f'(0) = 0. \]

It is also recorded that for a Newtonian fluid, Equations (16) to (21) are the same as those obtained by Wang (1978).

It is interesting to determine the effect of the non-dimensional elastic parameter N on the shear stresses on the elliptic plate. From Equations (1) to (3) and (7), we obtain
\[T_{xx} = \frac{U_3 \eta_0}{d} f'(l) + \frac{k_0 U_3^2}{d^2} f^{ii}(l) + \frac{\eta_0 U_3 x}{d} h'(l) + \frac{k_0 U_3^2 x}{d} h^{ii}(l) \]
\[T_{xy} = \frac{U_3 \eta_0}{d} g'(l) + \frac{k_0 U_3^2}{d^2} g^{ii}(l) + \frac{\eta_0 U_3 y}{d} k'(l) + \frac{k_0 U_3^2 y}{d} k^{ii}(l) \]
For the problem under consideration, it is important to find the load-carrying capacity L and friction force components D_x and D_y.

These physical quantities can be calculated by integrating pressure and shear stress components on the elliptic plate. The dimensionless expressions for the load-carrying capacity and friction force components are given through the following equations:
\[L' = \frac{4\eta_0}{\rho U_3 S D^2} \int [p - p_0] dS = \frac{1}{R} (h^{iv}(0) + RN[h''(0) - h''(0)k''(0)]) \]
\[D_x^* = -\frac{1}{\rho S U_1 U_3} \int_S T_{z x} \, dS = -\frac{f'(1)}{R} - N f''/(1) \]

\[D_y^* = -\frac{1}{\rho S U_2 U_3} \int_S T_{z y} \, dS = -\frac{g'(1)}{R} - N g''/(1) \]

where \(P_A \) is the ambient pressure at the edge of the elliptic plate.

Perturbation solution

We seek the solution of Equations (17) to (20) with the boundary conditions (21) for a small cross flow Reynolds number \(R \). We may expand the functions \(h, k, f, g \), and the unknown constant \(A \) in a power series of \(R \) in the following forms:

\[
\begin{align*}
\eta &= h_0 + R h_1 + o(R^2), \quad k = k_0 + R k_1 + o(R^2), \quad f = f_0 + R f_1 + o(R^2), \\
g &= g_0 + R g_1 + o(R^2), \quad A = A_0 + R A_1 + o(R^2).
\end{align*}
\]

If we substitute (34) into Equations (17) to (20), and equate the corresponding coefficients of \(R \) up to first order, we obtain the following set of ordinary differential equations

\[
\begin{align*}
 h_0'''' + (h_0 + k_0) h_0'' - h_0'' + N[(h_0 + k_0) h_0'' - 2(h_0' + k_0')] h_0'' &= 0, \\
 k_0'''' + (h_0 + k_0) k_0'' - k_0'' + N[(h_0 + k_0) k_0'' - 2(h_0' + k_0')] k_0'' &= 0, \\
 f_0'''' + (h_0 + k_0) f_0'' - h_0'' f_0 - N[(h_0 + k_0) f_0'' - 2(h_0' + k_0')] f_0'' &= 0, \\
 g_0'''' + (h_0 + k_0) g_0'' - k_0'' g_0 - N[(h_0 + k_0) g_0'' - 2(h_0' + k_0')] g_0'' &= 0.
\end{align*}
\]

subject to the boundary conditions

\[
\begin{align*}
 h_0(0) = 0, \quad h_1(0) = 0, \quad h_0'(0) = 0, \quad k_0(0) = 0, \quad k_0'(0) = 0, \quad k_0''(0) = 0, \\
 h_0(1) + k_0(1) = 1, \quad h_0'(1) + k_0'(1) = 1, \quad f_0(0) = 1, \quad f_0(1) = 1, \quad f_0'(0) = 0, \\
g_0(0) = 1, \quad g_0(1) = 0, \quad g_0(0) = 0, \quad (n=0,1)
\end{align*}
\]

Integrating Equations (35) to (39) with the boundary conditions (40), we have

Zeroth-order solution

\[
\eta = \frac{3\eta^2 - 2\eta^3}{1 + \beta}, \quad k_0 = \frac{\beta(3\eta^2 - 2\eta^3)}{1 + \beta}, \quad f_0 = 1 - \eta, \quad g_0 = 1 - \eta
\]

This solution is that of linear viscous fluid. No properties of the elastico-viscous fluid appear in Equation (41).
Table 1. Comparison of the values of \(f'(0), g'(0), h''(0) \) and \(h'''(0) \) with those of Ariel (1993) in the case of a porous flat plate \((\beta = 0) \) for some values of \(R \) and \(N \).

<table>
<thead>
<tr>
<th>(R)</th>
<th>(N)</th>
<th>(f'(0))</th>
<th>(g'(0))</th>
<th>(h''(0))</th>
<th>(h'''(0))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>Present Ariel</td>
<td>-1.088029</td>
<td>-1.088029</td>
<td>-1.030147</td>
<td>-1.030147</td>
</tr>
<tr>
<td>0.2</td>
<td>Present Ariel</td>
<td>-1.030257</td>
<td>-1.030257</td>
<td>-1.009208</td>
<td>-1.009208</td>
</tr>
<tr>
<td>0.2</td>
<td>Present Ariel</td>
<td>-0.964666</td>
<td>-0.964666</td>
<td>-0.986014</td>
<td>-0.986014</td>
</tr>
<tr>
<td>0.2</td>
<td>Present Ariel</td>
<td>-0.700942</td>
<td>-0.700942</td>
<td>-0.899598</td>
<td>-0.899598</td>
</tr>
<tr>
<td>1</td>
<td>Present Ariel</td>
<td>-1.405982</td>
<td>-1.405982</td>
<td>-1.153102</td>
<td>-1.153102</td>
</tr>
<tr>
<td>1</td>
<td>Present Ariel</td>
<td>-0.541463</td>
<td>-0.541463</td>
<td>-0.795851</td>
<td>-0.795851</td>
</tr>
<tr>
<td>1</td>
<td>Present Ariel</td>
<td>-3.660082</td>
<td>-3.660082</td>
<td>-0.076074</td>
<td>-0.076074</td>
</tr>
<tr>
<td>2</td>
<td>Present Ariel</td>
<td>-1.744503</td>
<td>-1.744503</td>
<td>-1.309634</td>
<td>-1.309633</td>
</tr>
<tr>
<td>2</td>
<td>Present Ariel</td>
<td>-1.291448</td>
<td>-1.291448</td>
<td>-0.971497</td>
<td>-0.971497</td>
</tr>
<tr>
<td>2</td>
<td>Present Ariel</td>
<td>-5.048659</td>
<td>-5.048651</td>
<td>-0.191910</td>
<td>-0.191910</td>
</tr>
</tbody>
</table>

\[\eta = 0 \] in Equations (17) to (20) and make use of the boundary conditions at \(\eta = 0 \), we get

\[
A = h'''(0) + RN [h''(0) - k''(0)h''(0)],
\]

\[
k''''(0) = \beta A + RN [h''(0) - k''(0)], \tag{46}
\]

\[
f''(0) = RN [(k''(0) - h''(0))f'(0) + h'''(0)],
\]

\[
g''(0) = RN [k''''(0) + (h''(0) - k''(0))g'(0)].
\]

It is worth mentioning that the above additional boundary conditions are essentially equivalent to the requirement that the solution reduces to the Newtonian solution as \(N \to 0 \). Calculations based on this assumption for various problems related to viscoelastic fluids have been carried out by some authors like Davies (1967), Frater (1970), Teipel (1986), Ariel (1992, 1994, 2002), Sadeghy and Sharifi (2004) and Mustafa et al. (2008).

The system of nonlinear ordinary differential (17) to (20) under the relevant conditions given in Equations (21) and (46) constitute a difficult two-point boundary value problem. The numerical integration of this boundary value problem is carried out using the Matlab solver singular boundary value problem (SBVP). The SBVP-package contains functions for solving boundary value problems for systems of nonlinear ordinary differential equations of the first order. The code is based on collocation at either equidistant or Gaussian collocation points. An error estimate for the global error of the approximate solution is also provided. This estimate provides the basis for an adaptive mesh selection strategy. The mesh points are automatically modified with the aim of equidistributing the global error. A detailed description is given in Auzinger et al. (2002). It is worth pointing out here that this method has been successfully used by the present authors to study the steady three-dimensional flow of a second grade fluid near the stagnation point of an infinite plate moving parallel to itself with constant velocity (Barış and Dokuz, 2006).

RESULTS AND DISCUSSION

The system of coupled ordinary differential equations (17) to (20) with the boundary conditions (21) and (46) has been solved numerically using the Matlab solver SBVP for several values of dimensionless pertinent parameters. The numerical integration proceeds as follows. The unknown initial conditions \(f'(0), g'(0), h''(0), h'''(0) \) and \(k''''(0) \) are roughly estimated in order to get \(f''(0), g''(0), h'''(0), k''''(0) \) and the unknown constant \(A \) from Equation (46). The accuracy of the assumed missing initial conditions are checked by comparing the calculated values of \(h(I), k(I), h'(I), k'(I), f(I) \) and \(g(I) \) with their given values at \(\eta = 1 \). If a difference exists, the computations with new and improved values for the missing initial conditions are repeated. The iterative procedure is stopped when the maximum change between successive iterates is less than \(10^{-5} \). Since the porous sliders operate at small values of \(R \), the variation of \(R \) is limited to a range from 0 to 5. A full numerical analysis for larger values of \(R \) is beyond the scope of the present work.

In order to validate the numerical method used, we have first compared our results for the values of \(f'(0), g'(0), h''(0), h'''(0) \) with those of Ariel (1993) in Table 1 for the special case corresponding to a porous flat plate \((\beta = 0) \). This table shows excellent agreement with the existing results in Ariel (1993). Moreover, the present numerical approach was validated against the results of the approximate perturbation solutions. In Tables 2 and 3, the missing initial conditions calculated from the first-order perturbation solutions are compared with the corresponding numerical solutions for several values of \(R \) and \(N \) in the case of a porous elliptic plate with \(\beta = 0.5 \). It is evident that the first-order perturbation solutions in terms of the \(R \) match almost exactly with numerical
solutions when both R and N are small. Therefore, it can be concluded that the present code can be used with great confidence to study the problem discussed in this study.

In order to distinguish the difference between the perturbation and direct numerical solutions, an error measure for a function ϕ can be described as follows:

$$E_\phi = \sqrt{\sum_i (\phi_i^{\text{per}} - \phi_i^{\text{num}})^2 / \sum_i (\phi_i^{\text{num}})^2}$$

(47)

where ϕ_i^{per} denotes the perturbation solution at the space position η_i, while ϕ_i^{num} is the corresponding value obtained by the direct numerical solution. The error percentages for the similarity functions between the perturbation solutions and the numerical solutions of the boundary value problem under consideration are listed in Table 4 for different values of R and N in the case of a porous elliptic plate with $\beta = 0.5$. The table shows that the solution based on the series expansion given in Equation (34) is only valid for $R < 1$ and $N < 0.2$. For larger values of R and N, the perturbation solutions can no longer be
Table 4. Error percentages for the similarity functions h, k, f and g between the perturbation solutions and the numerical solutions in the case of a porous elliptic plate for $\beta = 0.5$ and some values of R and N.

<table>
<thead>
<tr>
<th>R</th>
<th>N</th>
<th>E_f</th>
<th>E_g</th>
<th>E_h</th>
<th>E_k</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>0</td>
<td>0.079</td>
<td>0.034</td>
<td>0.138</td>
<td>0.142</td>
</tr>
<tr>
<td></td>
<td>0.1</td>
<td>0.020</td>
<td>0.011</td>
<td>0.028</td>
<td>0.029</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>0.064</td>
<td>0.067</td>
<td>0.079</td>
<td>0.071</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>1.679</td>
<td>1.155</td>
<td>0.278</td>
<td>0.568</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1.940</td>
<td>0.913</td>
<td>0.184</td>
<td>0.443</td>
</tr>
<tr>
<td></td>
<td>0.1</td>
<td>0.714</td>
<td>0.505</td>
<td>0.625</td>
<td>0.636</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>2.909</td>
<td>2.613</td>
<td>1.140</td>
<td>2.623</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>17.72</td>
<td>57.57</td>
<td>79.90</td>
<td>45.89</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>7.612</td>
<td>3.857</td>
<td>0.636</td>
<td>1.558</td>
</tr>
<tr>
<td></td>
<td>0.1</td>
<td>4.272</td>
<td>3.403</td>
<td>2.262</td>
<td>1.988</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>11.61</td>
<td>74.63</td>
<td>332.1</td>
<td>61.08</td>
</tr>
</tbody>
</table>

used. In such cases, the exact numerical solutions must be used.

In Figures 2 and 3, the functions which correspond to the lateral velocity components along the x and y axes are plotted versus η for three different values of the cross flow Reynolds number R, with the elastic number N as a parameter. The elasticity of the fluid affects the lateral velocity components in different ways, depending on the chosen values of the cross flow Reynolds number. For instance, when $R=0.2$, we notice that the lateral velocity components for a viscoelastic fluid is more than those for a Newtonian fluid. However, when $R=5$, an opposite effect is observed, that is, the lateral velocity components slightly decrease with an increase in the elasticity of the fluid.

In practical applications, the primary physical quantities of interest are load-carrying capacity and friction force. Tables 5 to 7 provide the dimensionless load-carrying capacity and friction force components for various values of the parameters. It can be easily seen from these tables that for a Newtonian and viscoelastic fluid, both load-carrying capacity and friction force increase rapidly when the cross-flow Reynolds number decreases. Physically this can be explained as follows: When ρ, u, and η_0 are held fixed, the decrease in the value of the cross-flow Reynolds number results only from the decrease in the gap width. In this case, since the changes in the values of the velocity components occur in the smaller distance, velocity gradients become larger. For this reason, both stress components in the fluid layer and load-carrying capacity and friction force on the porous elliptic plate increase considerably as the cross-flow Reynolds number decreases.

The efficiency of a porous slider can be increased by making the ratio of friction force to load-carrying capacity smaller. As pointed out in Wang (1974, 1978), and Wang and Wang (1975) and Watson et al. (1978) the porous sliders with a Newtonian fluid should be operated at small values of the cross-flow Reynolds number for optimum efficiency. Table 5 shows that the fact that the porous sliders should be operated at values of the cross-flow Reynolds number up to unity ($R<1$) still remains valid even when a viscoelastic fluid is used. Also, we observe from Tables 5 to 7 that the ratio of friction force to load-carrying capacity increases with an increase in R, up to a critical value of R (say, R_c), in which the friction force to load-carrying capacity ratio reaches a maximum, in the interval $2 < R_c < 5$, and thereafter decreases with increasing R. Therefore, a porous slider should be operated beyond the critical cross-flow Reynolds number R_c that causes its efficiency to be minimum. It is noticed that for a porous flat slider, the critical cross-flow Reynolds number is approximately 4 (Skalak et al., 1975; Wang, 1978; Watson et al., 1978; Bhatt, 1981; Ariel, 1993). Finally, it can be seen from Table 7 that the friction force components become noticeably smaller as N is increased. Since it is aimed to reduce the frictional resistance in the lateral directions for a porous slider, it is more advantageous to design a porous slider with a viscoelastic fluid rather than a Newtonian one for the case of a large cross-flow Reynolds number.

Conclusions

In this study, we have been concerned with a theoretical investigation of the problem of a porous elliptic slider using an elasticoviscous fluid. By using the appropriate similarity transformations, the governing equations are reduced to a set of nonlinear ordinary differential equations. The boundary value problem characterizing...
Figure 2. Lateral velocity profiles in the x-direction for $\beta = 0.5$ and some values of R and N.

Figure 3. Lateral velocity profiles in the y-direction for $\beta = 0.5$ and some values of R and N.
Table 5. Load-carrying capacity and friction force components for \(R = 0.2 \) and some values of \(\beta \) and \(N \).

<table>
<thead>
<tr>
<th>(\beta)</th>
<th>(N)</th>
<th>(L^*)</th>
<th>(D^*_x)</th>
<th>(D^*_y)</th>
<th>(D^_x / L^)</th>
<th>(D^_y / L^)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1558.126128</td>
<td>4.479618</td>
<td>4.659037</td>
<td>0.002875</td>
<td>0.002990</td>
</tr>
<tr>
<td>0.005</td>
<td>0.06</td>
<td>1553.541927</td>
<td>4.491265</td>
<td>4.653068</td>
<td>0.002891</td>
<td>0.002995</td>
</tr>
<tr>
<td>0.1</td>
<td>0.1</td>
<td>1548.957685</td>
<td>4.503034</td>
<td>4.647071</td>
<td>0.002907</td>
<td>0.003000</td>
</tr>
<tr>
<td>0.25</td>
<td>0.06</td>
<td>1503.111133</td>
<td>4.627723</td>
<td>4.585606</td>
<td>0.003079</td>
<td>0.003051</td>
</tr>
<tr>
<td>0.5</td>
<td>0.1</td>
<td>1466.429809</td>
<td>4.737194</td>
<td>4.534572</td>
<td>0.003230</td>
<td>0.003092</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1027.320520</td>
<td>4.538573</td>
<td>4.597709</td>
<td>0.004418</td>
<td>0.004475</td>
</tr>
<tr>
<td>0.005</td>
<td>0.06</td>
<td>1024.790843</td>
<td>4.544459</td>
<td>4.597816</td>
<td>0.004435</td>
<td>0.004487</td>
</tr>
<tr>
<td>0.1</td>
<td>0.1</td>
<td>1022.253897</td>
<td>4.550410</td>
<td>4.597931</td>
<td>0.004451</td>
<td>0.004498</td>
</tr>
<tr>
<td>0.5</td>
<td>0.06</td>
<td>996.709266</td>
<td>4.613613</td>
<td>4.596522</td>
<td>0.004629</td>
<td>0.004615</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>769.445151</td>
<td>4.567997</td>
<td>-</td>
<td>0.005937</td>
<td>-</td>
</tr>
<tr>
<td>0.005</td>
<td>0.06</td>
<td>767.593439</td>
<td>4.571012</td>
<td>-</td>
<td>0.005955</td>
<td>-</td>
</tr>
<tr>
<td>0.1</td>
<td>0.1</td>
<td>765.738760</td>
<td>4.574063</td>
<td>-</td>
<td>0.005973</td>
<td>-</td>
</tr>
<tr>
<td>0.5</td>
<td>0.06</td>
<td>747.034901</td>
<td>4.606628</td>
<td>-</td>
<td>0.006167</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>731.878710</td>
<td>4.635631</td>
<td>-</td>
<td>0.006334</td>
<td>-</td>
</tr>
<tr>
<td>0.005</td>
<td>0.06</td>
<td>723.766753</td>
<td>4.674012</td>
<td>-</td>
<td>0.007086</td>
<td>-</td>
</tr>
<tr>
<td>0.1</td>
<td>0.25</td>
<td>673.766753</td>
<td>4.774012</td>
<td>-</td>
<td>0.008998</td>
<td>-</td>
</tr>
<tr>
<td>0.5</td>
<td>0.5</td>
<td>574.354866</td>
<td>5.167786</td>
<td>-</td>
<td>0.038543</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 6. Load-carrying capacity and friction force components for \(R = 2 \) and some values of \(\beta \) and \(N \).

<table>
<thead>
<tr>
<th>(\beta)</th>
<th>(N)</th>
<th>(L^*)</th>
<th>(D^*_x)</th>
<th>(D^*_y)</th>
<th>(D^_x / L^)</th>
<th>(D^_y / L^)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>2.102388</td>
<td>0.167103</td>
<td>0.233692</td>
<td>0.079462</td>
<td>0.111127</td>
</tr>
<tr>
<td>0.005</td>
<td>0.06</td>
<td>2.050874</td>
<td>0.163591</td>
<td>0.220232</td>
<td>0.079767</td>
<td>0.108262</td>
</tr>
<tr>
<td>0</td>
<td>0.01</td>
<td>1.998683</td>
<td>0.160035</td>
<td>0.209926</td>
<td>0.080070</td>
<td>0.105032</td>
</tr>
<tr>
<td>0.03</td>
<td>0.06</td>
<td>1.788049</td>
<td>0.145203</td>
<td>0.156366</td>
<td>0.081208</td>
<td>0.087451</td>
</tr>
<tr>
<td>0.06</td>
<td>0.1</td>
<td>1.463035</td>
<td>0.121664</td>
<td>0.056389</td>
<td>0.083159</td>
<td>0.038543</td>
</tr>
<tr>
<td>0</td>
<td>0.06</td>
<td>1.289173</td>
<td>0.186477</td>
<td>0.206596</td>
<td>0.144649</td>
<td>0.160254</td>
</tr>
<tr>
<td>0.005</td>
<td>0.06</td>
<td>1.258748</td>
<td>0.180609</td>
<td>0.198290</td>
<td>0.143483</td>
<td>0.157529</td>
</tr>
<tr>
<td>0.5</td>
<td>0.01</td>
<td>1.227899</td>
<td>0.174556</td>
<td>0.189669</td>
<td>0.142159</td>
<td>0.154466</td>
</tr>
<tr>
<td>0.03</td>
<td>0.06</td>
<td>1.100334</td>
<td>0.148132</td>
<td>0.151514</td>
<td>0.134625</td>
<td>0.137698</td>
</tr>
<tr>
<td>0.06</td>
<td>0.1</td>
<td>0.899058</td>
<td>0.101024</td>
<td>0.081056</td>
<td>0.112366</td>
<td>0.090157</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0.958128</td>
<td>0.196142</td>
<td>-</td>
<td>0.204714</td>
<td>-</td>
</tr>
<tr>
<td>0.005</td>
<td>0.06</td>
<td>0.935619</td>
<td>0.189105</td>
<td>-</td>
<td>0.202117</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>0.01</td>
<td>0.912771</td>
<td>0.181818</td>
<td>-</td>
<td>0.199194</td>
<td>-</td>
</tr>
<tr>
<td>0.03</td>
<td>0.06</td>
<td>0.818058</td>
<td>0.149723</td>
<td>-</td>
<td>0.183023</td>
<td>-</td>
</tr>
<tr>
<td>0.06</td>
<td>0.06</td>
<td>0.668241</td>
<td>0.091247</td>
<td>-</td>
<td>0.136549</td>
<td>-</td>
</tr>
</tbody>
</table>

the flow has the feature that the order of the system of differential equations exceeds the number of available boundary conditions. Nevertheless we have obtained the exact numerical solution by augmenting the boundary
conditions at $\eta = 0$. The resulting boundary value problem has been solved numerically using the Matlab solver SBVP. The current numerical investigation is limited to values of cross-flow Reynolds number in the interval $0 \leq R \leq 5$. An excellent agreement of the present results with existing results has been shown. Hence, it is concluded that the Matlab solver SBVP is very powerful and efficient in finding the exact numerical solution of the boundary value problem discussed in this research. Numerical calculations have been carried out for various values given to the non-dimensional parameters and the significant contributions of the elastic parameter N to the lateral velocity components, load-carrying capacity and friction force components have been pointed out. In addition, it is shown that the perturbation solutions fail to give satisfactory results when $R > 1$ and $N > 0.2$.

ACKNOWLEDGEMENT

We would like to thank the editor and referees for their useful comments and suggestions regarding an earlier version of this paper.

REFERENCES

Walters’ (Model B) fluid in the presence of Hall currents and suspended particles. Ther. Sci. 15:487-500.